個別指導の学習空間 埼玉エリア 坂戸西・北本教室の清水です。
最近、高校の生徒とこんな話をしました
「先生、数学が三角比にはいってから覚える公式が多くて大変です。」
「確かに!!最初は大変だよね。」
「sin、cos、tanも30°、45°、60°・・・全部覚えるの大変ですよ~。」
「えっ?もしかして全部覚えようとしてるの?」
「えっ??覚えなくていいんですか??」
「“覚える”のではなく“イメージ”するんですよ~」
私は数学を教えるとき“イメージ”というワードをよく使います。
中学生なら一次関数、二次関数、合同証明・・・
高校生なら二次関数、二次不等式、三角比・・・
話を戻して、そんな高校生に
「角30°の直角三角形を書いてごらん。きれいに書かなくていいから。」
「書けましたー。sin30°は 高さ / 斜辺で、cos30°は・・・」
「ねっ。何時間もかけて“覚える”勉強をしていたことを“イメージ”して図を書いてみるだけで一瞬で確認もできるし、間違えもなくなるでしょ?!」
「確かにっ!」
二次不等式の問題でも同じような話を生徒としました。
「二次不等式>0 、二次不等式<0 の意味がわからないです。」
「判別式の意味はわかる?実際にグラフ書いたりしてる。」
「判別式はわかります!グラフは書いていないです。」
「よしっ!実際に書いてイメージしてみよう!!」
この後生徒には、次のような話をしました。
1.まずは問題から情報を集めます。
グラフは上に凸?下に凸?判別式の値は?xの定義域は?・・・
2.情報を集めたら、イメージした関数を実際に書いていきます。
グラフとx軸の位置関係を判別式で確認。
二次不等式>0 ならx軸より上に、
二次不等式<0 ならx軸より下に斜線を書く。
これだけです。
実際に、これだけのアドバイスで本人もびっくりするほど出来るようになっていました。
私が皆さんに実践してほしいのは
関数、三角比の問題は特に、『図を書く癖をつける』ことです。
先ほどの話しにもあるように、私は今でも三角比や関数を求めるときは実際に図形を描いて確認しています。高校数学だけでなく、中学生の内容でも同じです。
一次関数ならx-y座標に斜めの棒を一本書くだけで、だいぶ問題の意図が読み取りやすくなります。
問題から条件を読み取り、頭で“イメージ”した図形、グラフを実際に書いていく。
定規など使わず、フリーハンドで十分です。
思考の幅が広がるので是非、試してみてください。